

Using Pharmacogenomics to Inform Depression Treatment

Unmet Medical Need from Treatment As Usual

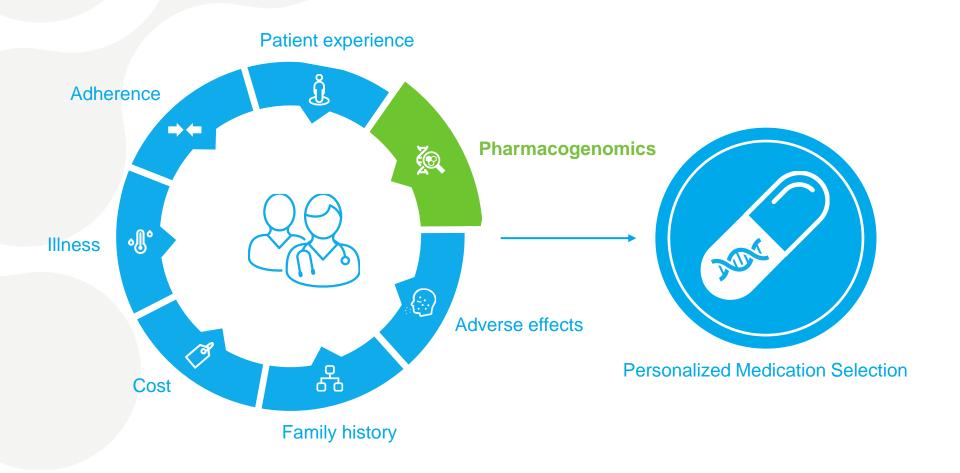
Less than 40% of patients achieve remission with initial drug treatment. With each additional medication trial, the chance of remission decreases, while treatment intolerance increases.

^{1.} Rush AJ, et al. Am J Psychiatry. 2006.

Why Are They Failing?

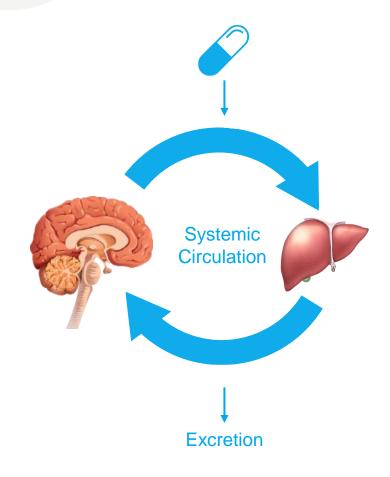
Why is remission so difficult to achieve?

Here are some of the usual culprits:


- Adherence
- Environmental Factors
- Ost / Insurance
- Adverse Effects

But have you considered that genetic variability may undermine medication choices and may be a factor in treatment failure?

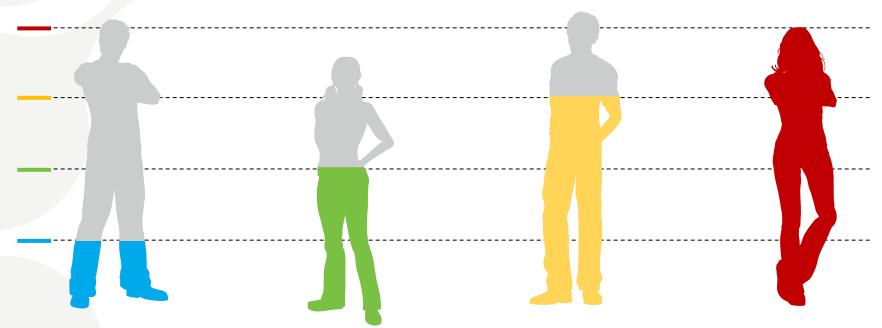
Personalized Medication Selection Factors



Pharmacodynamics and Pharmacokinetics

Pharmacodynamic variation changes how the drug affects the body

Pharmacokinetic


variation changes how the body affects the drug

How Genetics Can Affect Medication Blood Levels

Phenotypes

Ultrarapid Metabolizer

Breaks down medications rapidly. May not get enough medication at normal doses.

Extensive (Normal) Metabolizer

Breaks down medications normally. Has normal amounts of medication at normal doses.

Intermediate Metabolizer

Breaks down medications slowly. May have too much medication at normal doses.

Poor Metabolizer

Breaks down medications very slowly. May experience side effects at normal doses.

The GeneSight® Psychotropic Report

GeneSight® Psychotropic

Pharmacogenomic Test

Patient, Sample
Date of Birth: 7/22/1984
Clinician: Sample Clinician

 Order Number:
 3740219

 Report Date:
 5/12/2021

 Reference:
 145CIP

genesight

Questions about report interpretation?
Contact our medical information team:
855.891.9415 | medinfo@genesight.com

Antidepressants

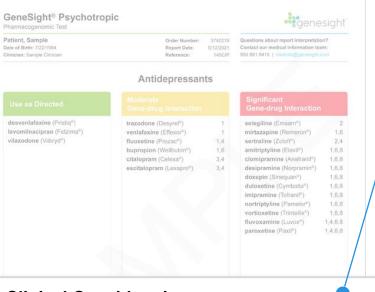
Use as Directed

desvenlafaxine (Pristiq®) levomilnacipran (Fetzima®) vilazodone (Viibryd®)

Moderate Gene-drug Interaction

trazodone (Desyrel®) 1
venlafaxine (Effexor®) 1
fluoxetine (Prozac®) 1,4
bupropion (Wellbutrin®) 1,6
citalopram (Celexa®) 3,4
escitalopram (Lexapro®) 3,4

Significant Gene-drug Interaction


selegiline (Emsam®)	2
mirtazapine (Remeron®)	1,6
sertraline (Zoloft®)	2,4
amitriptyline (Elavil®)	1,6,8
clomipramine (Anafranil®)	1,6,8
desipramine (Norpramin®)	1,6,8
doxepin (Sinequan®)	1,6,8
duloxetine (Cymbalta®)	1,6,8
imipramine (Tofranil®)	1,6,8
nortriptyline (Pamelor®)	1,6,8
vortioxetine (Trintellix®)	1,6,8
fluvoxamine (Luvox®)	1,4,6,8
paroxetine (Paxil®)	1,4,6,8

What are the Clinical Considerations?

Clinical Considerations

These state rationale for a medication's classification and offer treatment adjustments if a clinician desires to use this medication.

Clinical Considerations

- 1: Serum level may be too high, lower doses may be required.
- 2: Serum level may be too low, higher doses may be required.
- 3: Difficult to predict dose adjustments due to conflicting variations in metabolism.
- 4: Genotype may impact drug mechanism of action and result in moderately reduced efficacy.
- 6: Use of this drug may increase the risk of side effects.
- 8: FDA label identifies a potential gene-drug interaction for this medication.

Interpreting Combinatorial Pharmacogenomic Testing Can Get Complex

Pharmacokinetic Markers

CYP2D6

CYP2D6 + CYP2C19

CYP2D6 + CYP2C19 + CYP1A2

CYP2D6 + CYP2C19 + CYP1A2 + CYP2C9 + CYP3A4

CYP2D6 + CYP2C19 + CYP1A2 + CYP2C9 + CYP3A4+ CYP2B6

CYP2D6 + CYP2C19 + CYP1A2 + CYP2C9 + CYP3A4+ CYP2B6 + UGT1A4

CYP2D6 + CYP2C19 + CYP1A2 + CYP2C9 + CYP3A4+ CYP2B6 + UGT1A4 + UGT2B15 + CES1A1

Pharmacodynamic Markers

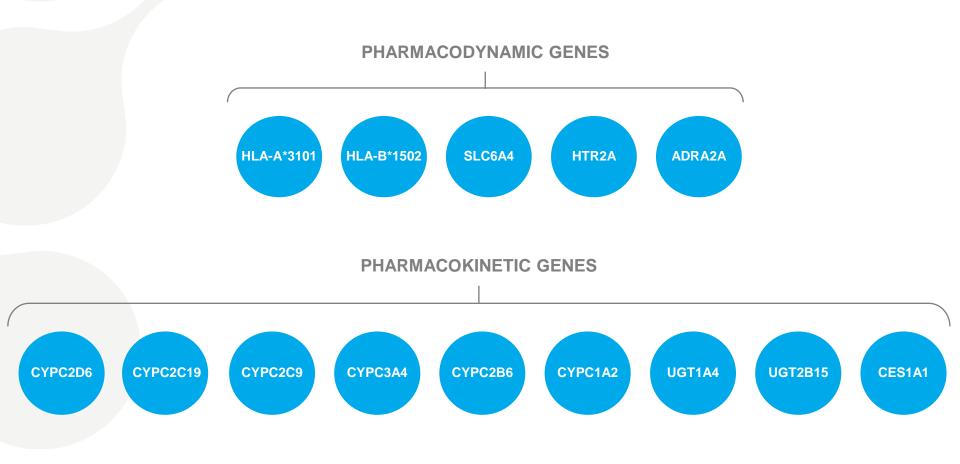
ADRA2A

HLA-A*3101

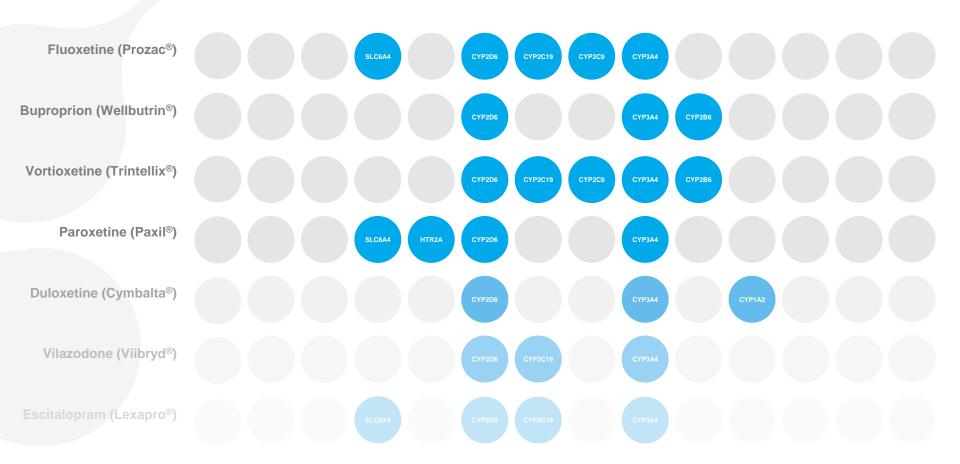
HLA-B*1502

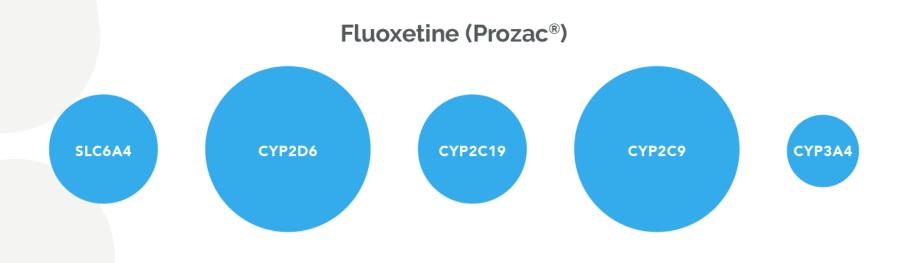
HTR2A

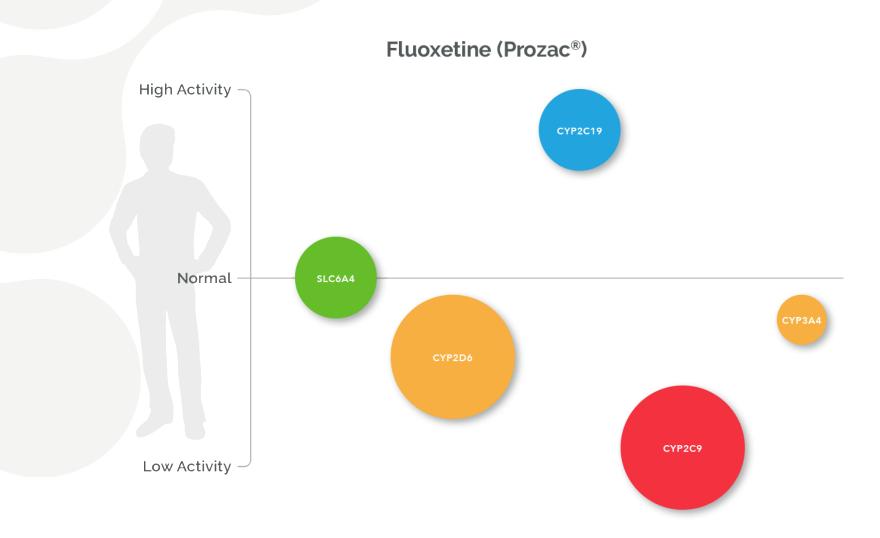
SLC6A4

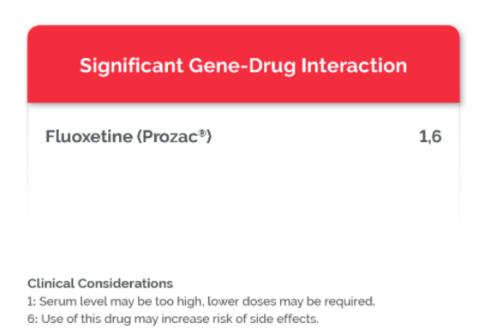

1,990,656

resultant composite phenotypes based on the 14 genes in the GeneSight® algorithm


Psychotropic Medications Are Processed Through Multiple Genetic Pathways


Medications Often Work Through a Unique Combination of These Genetically Controlled Pathways


The Significance of Those Genes Varies by Medication


A Patient's Unique Genetics Impact the Activity Level of Those Pathways

The GeneSight® Psychotropic Report Categorizes Medications and Provides Clinical Considerations Based on a Combined Assessment of the Drug's Pharmacology and the Relevant Genetic Pathways

The GeneSight® Psychotropic Test Analyzes All 61 Medications on Our Panel Using This Approach

GeneSight® Psychotropic

Pharmacogenomic Test

Patient, Sample
Date of Birth: 7/22/1984

Clinician: Sample Clinician

genesight*

Questions about report interpretation?
Contact our medical information team:
855.891.9415 | medinfo@genesight.com

Antidepressants

Order Number:

Report Date:

Reference:

3740219

5/12/2021

145CIP

Use as Directed

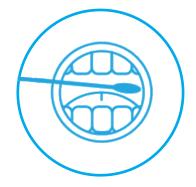
desvenlafaxine (Pristiq®) levomilnacipran (Fetzima®) vilazodone (Viibryd®)

Moderate Gene-drug Interaction

trazodone (Desyrel®)	1
venlafaxine (Effexor®)	1
fluoxetine (Prozac®)	1,4
bupropion (Wellbutrin®)	1,6
citalopram (Celexa®)	3,4
escitalopram (Lexapro®)	3,4

Significant Gene-drug Interaction

selegiline (Emsam®)	2
mirtazapine (Remeron®)	1,6
sertraline (Zoloft®)	2,4
amitriptyline (Elavil®)	1,6,8
clomipramine (Anafranil®)	1,6,8
desipramine (Norpramin®)	1,6,8
doxepin (Sinequan®)	1,6,8
duloxetine (Cymbalta®)	1,6,8
imipramine (Tofranil®)	1,6,8
nortriptyline (Pamelor®)	1,6,8
vortioxetine (Trintellix®)	1,6,8
fluvoxamine (Luvox®)	1,4,6,8
paroxetine (Paxil®)	1,4,6,8



GeneSight® is Easy to Implement in Practice

Step 1

Place your order on myGeneSight.com.

Step 2

You or a member of your staff collect the patient's DNA sample with a simple cheek swab OR

your patient collects the sample at home using our patient collection kit.

Step 3

Your patient's sample is sent to our lab for analysis. After the sample is received, results are typically available in about 2 days.

Step 4

Use the genetic insights from the GeneSight report to inform your treatment.

GeneSight® Supports Improved Outcomes in MDD

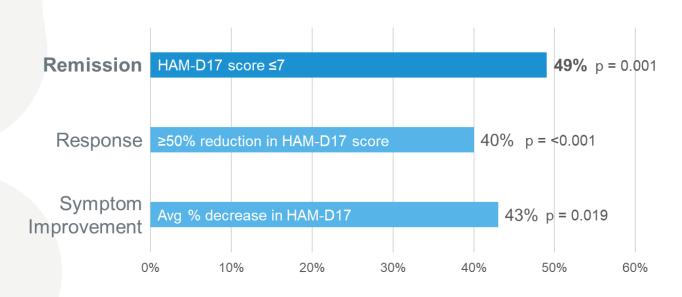
Identifies medications with significant gene-drug interactions (GDIs) to inform prescribing

10 clinical utility publications demonstrating improvement in patient outcomes¹⁻¹⁰

Level 1 evidence demonstrating 49% relative improvement in remission¹⁰

Saved >\$1,000 in total annual medication costs compared to treatment as usual¹¹

Note: Not all patients who receive the GeneSight test will achieve remission or experience cost savings.


¹Hall-Flavin DK, et al. Transl Psychiatry 2012; 2:e172 ²Hall-Flavin DK, et al. Pharmacogenet Genomics 2013; 23(10):535-48. ³Winner JG, et al. Discov Med 2013; 16(89):219-27. ⁴Altar CA, et al. Mol Neuropsychiatry.2015 Oct;1(3):145-155. ⁵Tanner JA, et al. Journal of Psychiatric Research 2018; 104:157-62. ⁶Greden JF, et al. J Psychiatry Res 2019, 111:59-67. ⁷Thase ME, et al. J Clin Psychiatry 2019;80(6). ⁸Dunlop BW, et al. BMC Psychiatry 2019; 19:420. ⁹Forester BP, et al. Am J Geriatr Psychiatry. 2020 Sep;28(9):933-945. ¹⁰Brown LC, et al. Pharmacogenomics. 2020 Jun;21(8):559-569. ¹¹Winner J, et al. Curr Med Res Opin. 2015 31(9):1633-43

GeneSight® Arm Realized a Significant Improvement in **All Outcomes**

Level 1 evidence: Relative improvement in patient outcomes compared to TAU

Symptom improvement

Decrease in HAM-D17

GeneSight

TAU 23.7%

33.8%

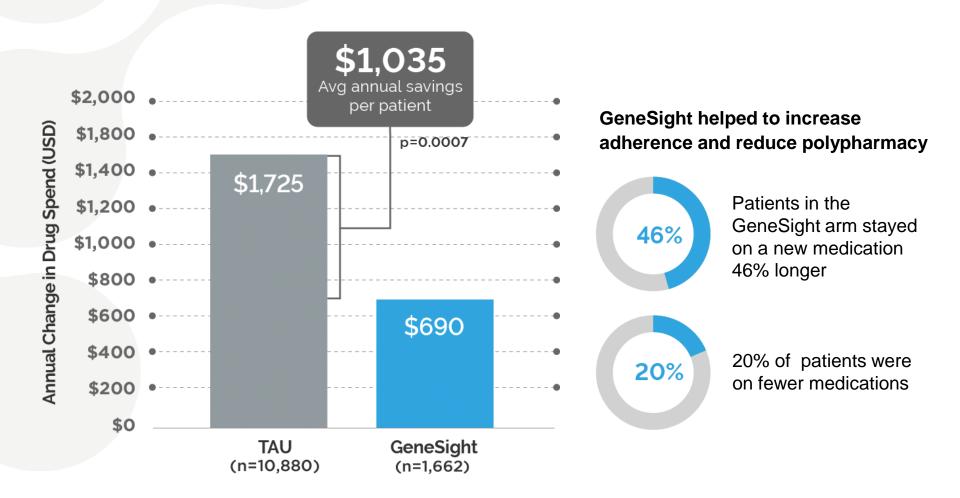
10%

Absolute

improvement

Relative

improvement


43%

Note: Not all patients who receive the GeneSight test will experience remission, response, or symptom improvement. Brown LC, et al. Pharmacogenomics. 2020 Jun;21(8):559-569.

Patients in the GeneSight® Arm had Lower Total Annual Medication Costs Compared to TAU*1

^{*} Not all patients who receive the GeneSight Psychotropic test will experience cost savings.

¹ Winner et al. Curr Med Research & Opin. (2015)

Questions? Comments? Feedback on this presentation?

Holly Johnson, Ph.D. holly.johnson@myriad.com (513) 701-7618

